Unraveling the Atomic Structure of Ultrafine Iron Clusters

نویسندگان

  • Hongtao Wang
  • Kun Li
  • Yingbang Yao
  • Qingxiao Wang
  • Yingchun Cheng
  • Udo Schwingenschlögl
  • Xi Xiang Zhang
  • Wei Yang
چکیده

Unraveling the atomic structures of ultrafine iron clusters is critical to understanding their size-dependent catalytic effects and electronic properties. Here, we describe the stable close-packed structure of ultrafine Fe clusters for the first time, thanks to the superior properties of graphene, including the monolayer thickness, chemical inertness, mechanical strength, electrical and thermal conductivity. These clusters prefer to take regular planar shapes with morphology changes by local atomic shuffling, as suggested by the early hypothesis of solid-solid transformation. Our observations differ from observations from earlier experimental study and theoretical model, such as icosahedron, decahedron or cuboctahedron. No interaction was observed between Fe atoms or clusters and pristine graphene. However, preferential carving, as observed by other research groups, can be realized only when Fe clusters are embedded in graphene. The techniques introduced here will be of use in investigations of other clusters or even single atoms or molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QTAIM study of Bonding and Structure of Pure Atomic Clusters,Part III : Nn Clusters (n= 4,6)

DFT and QTAIM computations have been performed on numbers of pure nitrogen cluster speciesi.e. Nn (n = 4, 6) for investigating the structure and bonding. This study is critical since thesemolecules have been nominated as the good synthetic targets of High Energy Materials (HEM).0nthe other hand the decomposition mechanism is closely depends on the bonding pattern. Thislatter concept was searche...

متن کامل

Unraveling the Effects of Process Control Agents on Mechanical Alloying of Nanostructured Cu-Fe Alloy

Nanostructured Cu-20Fe alloy was synthesized by mechanical alloying process and the effects of process control agents (PCA) on the phase formation, crystallite refinement and morphology of powder particles were studied. The dissolution of Fe into Cu matrix and the morphology of powder particles were analyzed by X-ray diffraction (XRD) technique and scanning electron microscopy (SEM), respective...

متن کامل

Development of Ultrafine Bainitic Structure in AISI 431 Stainless Steel

The development of ultrafine bainitic structure in AISI 431 stainless steel was the goal of this study. For this purpose, the AISI 431 specimens were austenitized at 1100 °C for 60 min followed by low-temperature austempering treatment at different temperatures and times. Austempered samples were characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (X...

متن کامل

Fluoride Precipitation of Cu Over Fe in a Selected pH Window

Fe is an impurity in most leach liquors. Its coexistence with copper in leaching solution of chalcopyrite (CuFeS2) which is the most important mineral of copper creates major extraction problems. Hydrochloric acid dissolves both copper and iron during chloride leaching of this mineral. Separation of Fe from Cu is thus necessary to obtain pure copper. This paper presents a novel metho...

متن کامل

COMPUTATIONAL ENUMERATION OF POINT DEFECT CLUSTERS IN DOUBLE- LATTICE CRYSTALS

The cluster representation matrices have already been successfully used to enumerate close-packed vacancy clusters in all single-lattice crystals [I, 2]. Point defect clusters in double-lattice crystals may have identical geometry but are distinct due to unique atomic postions enclosing them. The method of representation matrices is extended to make it applicable to represent and enumerate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012